DataRobot captures the knowledge, experience, and best practices of the world’s leading data scientists, delivering unmatched levels of automation and ease-of-use for machine learning initiatives. DataRobot enables Fintech users and companies to build and deploy highly accurate machine learning models in a fraction of the time.
Use Cases Across Fintech
“Fintech companies are disrupting the status quo in financial services like never before, with wide-ranging implications for all participants. Fintech’s ability to leverage AI and machine learning, while not being beholden to legacy technologies and processes, is redefining financial services. Fintech companies are leading the revolution.” - Robert Hegarty, DataRobot’s General Manager of Financial Markets & Fintech
Lending
Fintech has fundamentally altered the lending landscape, and machine learning has shined as a game-changing technology for lenders. From making smart underwriting decisions and reducing friction between lenders and consumers to identifying new customers and reducing the churn of existing customer bases, DataRobot’s automated machine learning platform helps fintech lending organizations make better predictions, faster.
Payments
Improvements in the flow of capital across borders is one of the most significant benefits of fintech, allowing businesses and consumers to participate in the financial ecosystem in exciting new ways – but significant challenges remain. Fraud has always been a concern in the banking and payments industries. DataRobot’s automated machine learning platform allows companies to build predictive models to identify payment transactions that need closer human inspection. By deploying machine learning models in real-time production, DataRobot helps companies find bad payments before they cause permanent damage.
Digital Wealth
In an industry dominated by personal wealth advisors, fintech has begun to automate the interactions between advisors and consumers in a way that increases transparency and reduces transactional fees. Machine learning will play a major role in the development of the digital wealth market, addressing the need for increased automation of portfolio management as “robo-advisors” begin to interact more frequently with customers. DataRobot’s automated machine learning platform plays a critical role in aligning consumers with the right opportunities to match their risk tolerance and financial profile.
DataRobot Helps Fintechs With:
Credit Card Fraudulent Transactions
The cost of credit card fraud is billions of dollars per year. By accurately predicting which transactions are likely fraudulent, banks can significantly reduce illegal transactions while providing cardholders with excellent customer experience.
Credit Default Rates
Individuals or businesses often need loans. Making accurate judgments on the likelihood of default is the difference between a successful and unsuccessful loan portfolio.
Digital Wealth Management
Machine learning algorithms help digital wealth advisory companies automate many portfolio management services to be more efficient and effective.
Direct Marketing
To maximize ROI, it’s important to boost marketing response rates and minimize misdirected communication. The most up-to-date modeling algorithms return the best results, but the data science expertise required to implement them is difficult to come by.
