• Customers
  • Freddie Mac Advances Affordable Housing Goals and More than Doubles Analytics Productivity with AI

Freddie Mac Advances Affordable Housing Goals and More than Doubles Analytics Productivity with AI

freddie mac logo color

In its mission to support affordable, adequate housing, Freddie Mac has applied AI to more than double its analytics productivity—enabling data scientists to scale.

Freddie Mac found business intelligence and manual practices didn’t scale effectively across 100,000+ customers and nearly four terabytes of data.
The DataRobot AI Platform automates predictive analytics from data input to managing models in production—for faster insights that drive its mission of supporting affordable housing.
Data scientists have proven concepts 2–10 times faster, saved 1,700+ hours per project, and gained 2.7 times the productivity—speeding time to market and advancing affordable housing goals.
We’ve automated the stuff that data scientists didn’t really like doing so they can focus on what really drives change. AI/ML has been critical in terms of the efficiency we’ve achieved by allowing us to scale massively.
Aravind Jagannathan
Aravind Jagannathan, Chief Data Officer

Chief Data Officer, Freddie Mac

The Limits of Conventional Analytics

Over the last 50 years, Freddie Mac has helped people realize their dream of owning a home more than 80 million times. The company has funded $11.6 trillion in mortgages and financed $6 million in rental units.

In 1970, Congress chartered Freddie Mac to support the U.S. housing finance system. Rather than lending directly to borrowers, Freddie Mac buys loans from approved lenders.

As market and economic conditions change, Freddie Mac must remain flexible and continuously deliver on its commitment to affordable, adequate housing. In a sea of unstructured and semi-structured data, it’s challenging to achieve meaningful predictions and key insights to inform business decisions. Working with hundreds of thousands of customers, and mining nearly four terabytes of data, they found business intelligence and manual practices didn’t scale.

Making Sense of Data – More Quickly and Accurately

Freddie Mac turned to the DataRobot AI Platform to automate predictive analytics from data input through managing models in production. The result: rapid insights that drive its mission.

“With DataRobot, we can analyze these large, complex datasets and gain valuable insights more quickly,” said Lakshmi Purushothaman, Vice President, Innovation in Data Science, Engineering, and Analytics.

The analytics team creates models that span across the organization, bringing value to internal teams, lenders, and their end customers.

As Freddie Mac collects front-end information from lenders and their customers and analyzes housing markets and properties, AI helps the business make sense of the data. The platform extracts data elements from various text documents and images much more quickly and accurately than with the previous manual approach.

Increasing Analytics Team Productivity by 2.7X 

The agency modernized its AI and ML infrastructure, shrinking the MLDev and deployment cycle to deliver meaningful value to the business rapidly. The DataRobot platform helps Freddie Mac rapidly home in on the winning models. 

Ultimately, the Freddie Mac analytics team attributes significant efficiency to the platform:

  • 2 to 10 times faster proof of concept
  • 1700+ hours saved in model development time per analytics project
  • A 2.7X productivity gain for a corresponding jump in time to market

This efficiency means that the data science team can focus on more use cases and scale more readily.

“Our ability to leverage data science to help us identify disparities, remove barriers, and enable informed decisions from our data, which has been exploding in terms of variety, volume, and velocity over the years, has been made much easier with DataRobot,” Purushothaman said.

We’ve been able to shorten the life cycle of development from months to days today with the DataRobot platform.
Lakshmi Purushothaman

Vice President, Innovation in Data Science, Engineering and Analytics, Freddie Mac

“We’ve automated the stuff that data scientists didn’t really like doing so they can focus on what really drives change,” added Aravind Jagannathan, Chief Data Officer. “AI/ML has been critical in terms of the efficiency we’ve achieved by allowing us to scale massively.”

Managing Governance and Explainability with an AI Center of Excellence

The DataRobot AI platform offers essential interpretability and explainability for stakeholders and compliance teams. The team saves time and work because the DataRobot platform collects the needed documentation—available in one-click reports. Explainability tools help clarify AI models into business-speak, detailing what’s behind the models.

To promote model governance and manage risk, the Freddie Mac team also created an AI Center of Excellence (CoE). Among its roles, the CoE ensures that the various people involved in analytics projects understand the governance required.

From the outset of the relationship to the current stage, data scientists work closely with the DataRobot team via office hours and deep-dive workshops to explore use cases and apply best practices throughout the process.

“When I think about how DataRobot has enabled us and supported us with our current use cases or ideas, it’s really tied to helping us with our objectives,” Jagannathan said. “From a customer perspective, I’ve found that’s rare in a partnership. It’s fantastic to bear the fruit of that relationship.”

Speed to Market at Lower Cost

As Freddie Mac looks ahead, the organization is optimistic about the power and potential of AI to drive its business goals.

“The value is ultimately making sure we’re oriented to the customer always,” said Tatyana Krol, Senior Director of Business Intelligence and Analytics. “We’re augmenting the decision-making with AI and letting people do what they’re best at. It’s definitely going to have a transformative value over the next several decades.”

We’re reducing the time and cost in the borrower and the lender experience when it comes to getting a mortgage. We allow more people to get into homes that they can afford and keep.
Michael Bradley Freddie Mac
Michael Bradley

Senior Vice President, Single-Family, Modeling, Econometrics, Data Science, and Analytics (MEDA), Freddie Mac

See the DataRobot AI Platform in Action
Request a demo
Liked this story? Share with others:

Other success stories

cta module 1920px

Take AI From Vision to Value

See how a value-driven approach to AI can accelerate time to impact.