- B
- Blockchain
- C
- Customer Churn
- Counterterrorism
- Cybersecurity in the Public Sector
- Credit Card Fraudulent Transactions
- Credit Default Rates
- Conversion Modeling
- Claim Payment Automation Modeling
- Claim Development Modeling
- D
- Drug Delivery Optimization
- Disease Propensity
- Digital Wealth Management
- Direct Marketing
- E
- Estimating Sepsis Risk
- F
- Finding Duplicate Customer Records in Your Database
- Fraud detection
- Finding New Oil and Gas Sources
- Fraudulent Claim Modeling
- G
- Google AdWords Bidding
- H
- Hospital Readmission Risk
- I
- Inventory Forecasting
- Insider Threat in Public Sector
- Insurance Pricing
- L
- Loyalty Program Usage
- Life Insurance Underwriting
- M
- Multichannel Marketing Attribution
- Modeling ICU Occupancy
- N
- Next Best Offer
- Next Best Action
- P
- Product Personalization
- Q
- Quality Assurance
- S
- Supply Chain Management
- View global site search results

Loyalty Program Usage
Problem/Pain
Loyalty programs are designed to improve customer engagement and reduce customer churn, but they are only effective when customers are actively participating. Choosing the best content and redemption offers for loyalty schemes gets program members more active and engaged, but it is difficult to know which activities will be effective.
Solution
With machine learning, companies personalize redemption recommendations in loyalty schemes, resulting in increased point redemptions, more fulfilling experiences, and a more active membership base. For example, models predict the types of people that are more likely to travel, the types of travel people are likely to undertake, the prices that travellers are willing to pay, the importance of accommodation relative to travel, and the importance of experience compared to travel, all of which allows travel companies to tailor offerings and loyalty programs for maximum engagement and use.
Why DataRobot
DataRobot’s automated machine learning platform rapidly builds accurate and agile models that predict members’ redemption preferences with just one click.