サプライチェーンの「DX」という言葉がメディアで日々取り上げられる一方で、「どこから 手をつけて良いのかわからない」「どんな体制が必要なのか」といった 声が多く聞かれます。遅れていると指摘される日本の DX をどう進めて いくべきなのでしょうか。現場起点で AI 活用に取り組み、全社的に AI 活用を推進しているヤマハ発動機株式会社の大西 圭一氏とダイハツ 工業株式会社の太古 無限氏に、DX を推進するプロジェクトをどう立ち上げ、どう広げていったのかを聞きました。
データサイエンティスト
DataRobot データサイエンティストとして、小売・流通業界のお客さまの AI 活用/推進を支援。博士(工学)修了後、大手電機メーカーにて研究開発に従事。AIを用いた需要予測や材料の配合最適化シミュレーションに取り組んだ経験を有する。現在は、小売・流通業界を中心に複数のプロジェクトに従事し、AIによる継続的な価値創出を支援。
ビジネスにおける機械学習モデルの活用が加速する中、「AIガバナンス」という言葉が注目を集めています。AIガバナンスとは、AIモデルの開発から運用にわたるライフサイクル全体を通して責任ある管理を行うことを指しますが、運用面ではモデルの精度やドリフトを継続的に監視し、適切な対策を講じることが重要な要素の一つです。
DataRobotとApache Airflowを連携することで、機械学習 (ML) パイプラインを自動化し、MLOps ワークフローを強化する方法について説明します。
流通・鉄道・通信業界のお客様を担当し、技術ではMLOpsテクノロジーを中心に扱っているデータサイエンティストの濱上です …
- DataRobot MLOps監視エージェントによるAIモデルの運用管理 - はじめに 小売・流通業界のお客様を担当…
ターゲットマーケティングなどで近年注目されているアップリフトモデリングは、介入効果を個別またはサブグループごとに予測することで介入すべき対象を明らかにする手法です。本記事では、アップリフトモデリングのメリットや適用範囲・注意点を説明し、DataRobotを用いたシンプルな操作によるモデル構築方法をご紹介します。