AI アーキテクト
DataRobot AI アーキテクト。2018年から DataRobot に参加。DataRobot 製品に関するフィードバック収集と新規開発計画への反映、新機能・新製品のベータプログラムやローンチ、トレーニングやマーケティングを通じた普及活動、ローカライゼーション管理、などを通じて、AI と DataRobot の価値を日本に広く広めるための業務に従事。
ビジネスにおける機械学習モデルの活用が加速する中、「AIガバナンス」という言葉が注目を集めています。AIガバナンスとは、AIモデルの開発から運用にわたるライフサイクル全体を通して責任ある管理を行うことを指しますが、運用面ではモデルの精度やドリフトを継続的に監視し、適切な対策を講じることが重要な要素の一つです。
コードセントリックなデータサイエンティストを多く抱える組織にとって、AI開発環境の管理は複雑で時間のかかる課題となっています。DataRobot Codespaces / Notebooksは、この課題に対する包括的なソリューションを提供し、AI開発プロセスの効率化と最適化を実現します。
データサイエンスの世界は急速に進化し続けており、効率的なツールと環境の重要性がますます高まっています。DataRobotはGUIでの機械学習モデル構築を支援するプラットフォームとして知られていますが、最近ではDataRobot Codespaces / Notebooksという新しい機能をリリースし、コードによるデータサイエンスのワークフローをサポートしています。
DataRobotではマネージドサービス(いわゆる「クラウド版」)とセルフマネージド型(いわゆる「オンプレミス版」)に加え、近年では専有環境のマネージドサービスであるシングルテナント版も提供しており、セキュリティ要件に応じて選ぶことができます。セルフマネージド型(「オンプレミス版」)をお使いで、なかなかバージョンアップの時間が取れない!という場合、二世代前のバージョン8(あるいはそれ以前)を使っているユーザーの方もいらっしゃるのではないでしょうか。このブログではそうしたユーザーの方向けに最新世代のDataRobotをご紹介します。