サプライチェーンの「DX」という言葉がメディアで日々取り上げられる一方で、「どこから 手をつけて良いのかわからない」「どんな体制が必要なのか」といった 声が多く聞かれます。遅れていると指摘される日本の DX をどう進めて いくべきなのでしょうか。現場起点で AI 活用に取り組み、全社的に AI 活用を推進しているヤマハ発動機株式会社の大西 圭一氏とダイハツ 工業株式会社の太古 無限氏に、DX を推進するプロジェクトをどう立ち上げ、どう広げていったのかを聞きました。
データサイエンティスト
DataRobotデータサイエンティスト。システムインフラ全般、特に大規模 RDB 基盤に関する経験を保有。機械学習モデルの開発からビジネス適用に渡り技術的視座から支援を実施、また技術的トレーニングカリキュラムの開発を行っている。主に流通・小売・また通信業界のお客様に対する支援を担当。
機械学習のビジネス利用は当たり前となり、MLOpsという概念、思想も段々と認知が進んできていますDataRobotはMLOpsのコミュニティを運営する一方、DataRobot MLOpsという製品をリリースしていきます。機械学習モデルのビジネス実装を無数に手がけてきたDataRobotならではの経験が反映された製品の一端をご紹介いたします。
機械学習プロジェクトは、モデルを作成し、デプロイをする事で完結するわけではありません。機械学習モデルに特有の運用監視を正しく行うことで、モデルの性能低下を防ぎ、またよりビジネスに即したモデルへと進化させていくことができます。この技術の集積体であるMLOpsをご紹介します。
DataRobotブログでは、機械学習の技術ティップス、産業各界における応用事例、AI活用の組織的課題などについて今年も弊社のデータサイエンティストが精力的に執筆してきました。今回は今年一年間の振り返りとして、各メンバーが注目した、今年のニュース総集編企画を行いたいと思います!第二弾は12/27リリース。
DataRobot フィールドサポートエンジニアの小島です。 (本記事は こちら の記事からの続編です) 前編の記事では…
DataRobot フィールドサポートエンジニアの小島です。 機械学習!というと、自然と「いかに精度のよいモデルを作り上…