• Blog
  • Technical
  • A New Frontier: How Machine Learning Explanations Will Improve Your Business

A New Frontier: How Machine Learning Explanations Will Improve Your Business

November 18, 2016
by
2 min

by Daniel Becker
Data Scientist | Technical Product Director at DataRobot

Everyone expects machine learning models to make accurate predictions. At DataRobot, we’ve helped our users develop models to make a wide range of predictions, such as:

  • Which customers will cancel their service?
  • Which baseball players will become superstars?

What fewer people realize is that machine learning models can not only answer questions but can simultaneously deliver powerful insights. Our users have been surprised (and impressed) when we help answer questions like:

  • What are the primary drivers of service cancellations?
  • Why will a certain player become a superstar?

Reason Codes, introduced in the latest update to the DataRobot platform, provide clear explanations for every prediction in a way that most data scientists never imagined possible. The result is greater than the sum of its parts.

reason-codes-blog-1_600

To see the value of prediction-level insights, let’s go back to the predictive questions described above.

 

Which customers will cancel their service?

Many businesses ask this question and then assign at-risk customers to a department tasked with minimizing churn. The customer outreach team contacts all potential churn customers with a generic message, hoping it will address each customer’s underlying reason for potential cancellation.

reason-codes-blog-2_600

With reason codes, the outreach team can proactively identify and address each customer’s concern. A customer worried about cost might receive a pricing promotion. A customer upset about a service glitch may be contacted directly by technical support.

With reason codes, “shot-in-the-dark” contact can be replaced with a targeted and effective retention plan.

reason-codes-blog-3_600

 

Which baseball players will become superstars?

The success of the 2003 Oakland Athletics, chronicled in the book and movie “Moneyball,” has made data science increasingly prevalent in professional sports. Hoping to leverage those same successes, teams have come to rely heavily on predictive models to identify upcoming superstars. Reason codes open up a whole new range of applications with these models, extending the forecasting–and hopefully the season.

With a corral of young players, how do you identify those that are good enough to make the majors? You can build a predictive model that says, yes or no, with some percentage of likelihood for each player. But what if you have invested in a star whose stock is plummeting? Reason codes can help identify the reason for that drop—pitching too much given injury history? From the answers you can adjust the environment and potentially revive your season.

One of the biggest gripes that users have with machine learning systems is the lack of visibility into why decisions have been made. With DataRobot reason codes, you can now extract insight from the models and make decisions based on this deeper level of visibility. If you want to see how reason codes work, you can request a demo to see DataRobot in action.

 

New Call-to-action

About the author
Share this post
Subscribe to our Blog

Thanks! Check your inbox to confirm your subscription.

Thank You!

We’re almost there! These are the next steps:

  • Look out for an email from DataRobot with a subject line: Your Subscription Confirmation.
  • Click the confirmation link to approve your consent.
  • Done! You have now opted to receive communications about DataRobot’s products and services.

Didn’t receive the email? Please make sure to check your spam or junk folders.

Close

Newsletter Subscription
Subscribe to our Blog